ข่ายงานประสาทเทียม
วันที่เขียน 6/9/2559 8:38:49     แก้ไขล่าสุดเมื่อ 28/1/2569 2:04:36
เปิดอ่าน: 4060 ครั้ง

ข่ายงานประสาทแบบป้อนไปหน้า (feedforward) ประกอบด้วยเซตของบัพ (node) ซึ่งอาจจะถูกกำหนดให้เป็นบัพอินพุต (input nodes) บัพเอาต์พุต (output nodes) หรือ บัพอยู่ระหว่างกลางซึ่งเรียกว่า บัพฮินเดน (hidden nodes) มีการเชื่อมต่อระหว่างบัพ (หรือนิวรอน) โดยกำหนดค่าน้ำหนัก (weight) กำกับอยู่ที่เส้นเชื่อมทุกเส้น เมื่อข่ายงานเริ่มทำงาน จะมีการกำหนดค่าให้แก่บัพอินพุต โดยค่าเหล่านี้ อาจจะได้มาจากการกำหนดโดยมนุษย์ จากเซนเซอร์ที่วัดค่าต่างๆ หรือผลจากโปรแกรมอื่นๆ จากนั้นบัพอินพุต จะส่งค่าที่ได้รับ ไปตามเส้นเชื่อมขาออก โดยที่ค่าที่ส่งออกไปจะถูกคูณกับค่าน้ำหนักของเส้นเชื่อม บัพในชั้นถัดไปจะรับค่า ซึ่งเป็นผลรวมจากบัพต่างๆ แล้วจึงคำนวณผลอย่างง่าย โดยทั่วไปจะใช้ฟังก์ชันซิกมอยด์ (sigmoid function) แล้วส่งค่าไปยังชั้นถัดไป การคำนวณเช่นนี้จะเกิดขึ้นไปเรื่อยๆ ทีละชั้น จนถึงบัพเอาต์พุต โดยในยุคแรก (ราว ค.ศ. 1970) จำนวนชั้นจะถูกกำหนดไว้เป็นค่าคงที่ แต่ในปัจจุบันมีการนำขั้นตอนวิธีเชิงพันธุกรรม มาช่วยออกแบบโครงสร้างของข่ายงาน ดู นิวโรอีโวลูชัน (Neuroevolution)

ข้าพเจ้า นายเกรียงไกร ราชกิจ ตำแหน่ง ผู้ช่วยศาสตราจารย์ สังกัด สาขาวิชาคณิตศาสตร์ คณะวิทยาศาสตร์ ขอนำเสนอรายงานสรุปเนื้อหาและการนำไปใช้ประโยชน์จากการเข้าอบรม สัมมนา หรือประชุมวิชาการ ในงานประชุมวิชาการระดับนานาชาติ International Conference on Artificial Intelligence and Soft Computing  21st-22nd June, 2016 at Bangkok, Thailand

นักวิจัยส่วนใหญ่ในปัจจุบันเห็นตรงกันว่าข่ายงานประสาทเทียมมีโครงสร้างแตกต่างจากข่ายงานในสมอง แต่ก็ยังเหมือนสมอง ในแง่ที่ว่าข่ายงานประสาทเทียม คือการรวมกลุ่มแบบขนานของหน่วยประมวลผลย่อยๆ และการเชื่อมต่อนี้เป็นส่วนสำคัญที่ทำให้เกิดสติปัญญาของข่ายงาน เมื่อพิจารณาขนาดแล้ว สมองมีขนาดใหญ่กว่าข่ายงานประสาทเทียมอย่างมาก รวมทั้งเซลล์ประสาทยังมีความซับซ้อนกว่าหน่วยย่อยของข่ายงาน อย่างไรก็ดีหน้าที่สำคัญของสมอง เช่นการเรียนรู้ ยังคงสามารถถูกจำลองขึ้นอย่างง่ายด้วยข่ายงานประสาท

ข่ายงานประสาทแบบป้อนไปหน้า (feedforward) ประกอบด้วยเซตของบัพ (node) ซึ่งอาจจะถูกกำหนดให้เป็นบัพอินพุต (input nodes) บัพเอาต์พุต (output nodes) หรือ บัพอยู่ระหว่างกลางซึ่งเรียกว่า บัพฮินเดน (hidden nodes) มีการเชื่อมต่อระหว่างบัพ (หรือนิวรอน) โดยกำหนดค่าน้ำหนัก (weight) กำกับอยู่ที่เส้นเชื่อมทุกเส้น เมื่อข่ายงานเริ่มทำงาน จะมีการกำหนดค่าให้แก่บัพอินพุต โดยค่าเหล่านี้ อาจจะได้มาจากการกำหนดโดยมนุษย์ จากเซนเซอร์ที่วัดค่าต่างๆ หรือผลจากโปรแกรมอื่นๆ จากนั้นบัพอินพุต จะส่งค่าที่ได้รับ ไปตามเส้นเชื่อมขาออก โดยที่ค่าที่ส่งออกไปจะถูกคูณกับค่าน้ำหนักของเส้นเชื่อม บัพในชั้นถัดไปจะรับค่า ซึ่งเป็นผลรวมจากบัพต่างๆ แล้วจึงคำนวณผลอย่างง่าย โดยทั่วไปจะใช้ฟังก์ชันซิกมอยด์ (sigmoid function) แล้วส่งค่าไปยังชั้นถัดไป การคำนวณเช่นนี้จะเกิดขึ้นไปเรื่อยๆ ทีละชั้น จนถึงบัพเอาต์พุต โดยในยุคแรก (ราว ค.ศ. 1970) จำนวนชั้นจะถูกกำหนดไว้เป็นค่าคงที่ แต่ในปัจจุบันมีการนำขั้นตอนวิธีเชิงพันธุกรรม มาช่วยออกแบบโครงสร้างของข่ายงาน ดู นิวโรอีโวลูชัน (Neuroevolution)

โครงข่ายประสาทเทียมแบบ MLP เป็นรูปแบบหนึ่งของโครงข่ายประสาทเทียมที่มีโครงสร้างเป็นแบบหลายๆชั้น ใช้สำหรับงานที่มีความซับซ้อนได้ผลเป็นอย่างดี โดยมีกระบวนการฝึกฝนเป็นแบบมีผู้สอน (Supervise) และใช้ขั้นตอนการส่งค่าย้อนกลับ (Backpropagation) สำหรับการฝึกฝนกระบวนการส่งค่าย้อนกลับ ประกอบด้วย 2 ส่วนย่อยคือ การส่งผ่านไปข้างหน้า (Forward Pass) การส่งผ่านย้อนกลับ (Backward Pass) สำหรับการส่งผ่านไปข้างหน้า ข้อมูลจะผ่านเข้าโครงข่ายประสาทเทียมที่ชั้นข้อ มูลเข้า และจะส่งผ่าน จากอีกชั้นหนึ่งไปสู่อีกชั้นหนึ่งจนกระทั่งถึงชั้นข้อมูลออก ส่วนการส่งผ่านย้อนกลับค่าน้ำหนักการเชื่อมต่อจะถูกปรับเปลี่ยนให้สอดคล้องกับกฎการแก้ข้อผิดพลาด (Error-Correction) คือผลต่างของผลตอบที่แท้จริง (Actual Response) กับผลตอบเป้าหมาย (Target Response) เกิดเป็นสัญญาณผิดพลาด (Error Signal) ซึ่งสัญญาณผิดพลาดนี้จะถูกส่งย้อนกลับเข้าสู่โครงข่ายประสาทเทียมในทิศทางตรงกันข้ามกับการเชื่อมต่อ และค่าน้ำหนักของการเชื่อมต่อจะถูกปรับจนกระทั่งผลตอบที่แท้จริงเข้าใกล้ผลตอบเป้าหมาย

สัญญาณที่มีโครงข่ายประสาทเทียมแบบ MLP มี 2 ประเภทคือ Function Signal และ Error Signal

-Function Signal เป็นสัญญาณเข้าที่มาจากโหนดในชั้นก่อนหน้า และจะส่งผ่านไปข้างหน้าจากโหนดหนึ่งไปสู่อีกโหนดหนึ่ง

-Error Signal เป็นสัญญาณย้อนกลับที่เกิดขึ้นที่โหนดในชั้นข้อมูลออกของโครงข่ายประสาทเทียม และถูกส่งผ่านย้อนกลับจากชั้นหนึ่งไปสู่อีกชั้นหนึ่ง

หลักการทำงานของ MLP คือในแต่ละชั้นของชั้นซ่อนตัว (Hidden Layer) จะมีฟังก์ชันสำหรับคำนวณเมื่อได้รับสัญญาณ (Output) จากโหนดในชั้นก่อนหน้านี้ เรียกว่า Activation Function โดยในแต่ละชั้นไม่จำเป็นต้องเป็นฟังก์ชันเดียวกันก็ได้ ชั้นซ่อนตัวนั้นมีหน้าที่สำคัญคือ จะพยายามแปลงข้อมูลที่เข้ามาในชั้น (Layer) นั้นๆให้สามารถแยกแยะความแตกต่างโดยใช้เส้นตรงเส้นเดียว (Linearly Separable) และก่อนที่ข้อมูลจะถูกส่งไปถึงชั้นข้อมูลออก (Output Layer) ในบางครั้งอาจจำเป็นต้องใช้ชั้นซ่อนตัวมากกว่า 1 ชั้นในการแปลงข้อมูลให้อยู่ในรูป Linearly Separable

ในการคำนวณหา Output ในปัญหาการจำแนกทำได้โดยการใส่ข้อมูล Input เข้าไปในโครงข่ายประสาทเทียมที่เราได้ทำการหาไว้แล้ว จากนั้นให้ทำการเปรียบเทียบค่าของ Output ใน Output Layer และให้ทำการเลือกค่าของ Output ที่มีค่าสูงกว่า (Neuron ที่มีค่าสูงกว่า) และทำการรับค่าของพยากรณ์ที่ตรงกับ Neuron ที่เลือก และให้นำค่าของ มาเปรียบเทียบกับค่าที่ยอมรับได้ หากค่าของ อยู่ในช่วงที่รับได้ (Error น้อยกว่า Error ที่เรากำหนด) ก็ให้ทำการรับข้อมูลชุดถัดไป แต่หากค่าของ มากกว่าค่าที่ยอมรับได้ ให้ทำการปรับค่าน้ำหนักและ Biased ตามขั้นตอนที่ได้กล่าวไว้ข้างต้น เมื่อทำการปรับน้ำหนักเรียบร้อยแล้ว ให้ทำการรับข้อมูลชุดถัดไปและทำตามขั้นตอนซ้ำอีกรอบจนกระทั่งถึงข้อมูลชุดสุดท้าย และเมื่อทำข้อมูลชุดสุดท้ายเสร็จจะนับเป็น 1 รอบของการคำนวณ (1 Epoch) จากนั้นจะทำการหาค่าผิดพลาดรวมเฉลี่ย จากค่าเฉลี่ยของ ที่ได้เก็บค่าเอาไว้ เพื่อใช้ในการตรวจสอบว่าค่า โดยเฉลี่ยในการจำแนกนั้น มีค่าน้อยกว่าค่าผิดพลาดที่ยอมรับได้หรือไม่ ถ้าใช่แสดงว่าโครงข่ายประสาทเทียมที่สร้างขึ้นนั้นสามารถให้ผลลัพธ์ที่ถูกต้องของทุกๆข้อมูลแล้ว จึงทำการจบการเรียนรู้ได้ แต่ถ้าไม่ใช่ ให้กลับไปทำตามขั้นตอนแรก โดยเริ่มรับข้อมูลชุดที่ 1 ใหม่

          ในส่วนของการนำไปใช้ประโยชน์นั้น  สำหรับข้าพเจ้า การได้เข้าร่วมงานประชุมวิชาการระดับนานาชาติ จะเป็นการกระตุ้น ผลักดันให้มีการผลิตผลงานทางวิชาการควบคู่ไปกับกระบวนการเรียนการสอนเพื่อให้นักศึกษาได้ตระหนักว่า คณิตศาสตร์นั้นสามารถนำไปใช้กับทุกศาสตร์ – สาขาวิชาอย่างแท้จริง อีกทั้งยังเป็นการพัฒนาการใช้ภาษาอังกฤษ และเป็นเวทีในการแลกเปลี่ยนประสบการณ์ การทำงานวิจัย กับบุคคลที่อยู่ในแวดวงวิชาการอีกด้วย

คำสำคัญ :
กลุ่มบทความ :
หมวดหมู่ :
แชร์ :
https://erp.mju.ac.th/acticleDetail.aspx?qid=585
ความคิดเห็นทั้งหมด (0)
ไม่มีข้อมูลตามเงื่อนไขที่ท่านกำหนด
รายการบทความการแลกเปลี่ยนเรียนรู้หมวดหมู่ : กลุ่มงานสายวิชาการ
การเผยแพร่ความรู้ที่ได้จากการเข้าร่วมอบรม/สัมมนา/งานประชุมวิชาการ » ความรู้ที่ได้จากการเข้าร่วมสัมมนาวิชาการ เรื่อง การใช้งานเครื่อง FTIR, TGA, DSC
สถาบันบริการตรวจสอบคุณภาพและมาตรฐานผลิตภัณฑ์ร่วมกับบริษัทเพอร์กินเอลเมอร์ (ประเทศไทย) ได้จัดสัมมนาวิชาการ เรื่อง การใช้งานเครื่อง FTIR, TGA, DSC เพื่อการตรวจสอบคุณภาพวัสดุและพัฒนาผลิตภัณฑ์ ในวันที่...
DSC  FTIR  TGA     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน วีรินท์รดา ทะปะละ  วันที่เขียน 14/1/2569 14:59:45  แก้ไขล่าสุดเมื่อ 27/1/2569 23:50:01   เปิดอ่าน 34  ครั้ง | แสดงความคิดเห็น 0  ครั้ง
งานนวัตกรรม IPITEx2026 » งานนวัตกรรม IPITEx2026
ความรู้และประโยชน์ที่เข้าร่วมงาน IPITEx2026 วันที่ 9 มกราคม 2569 สำนักงานการวิจัยแห่งชาติ (วช.) กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม ได้จัดงาน Bangkok International Intellectual Proper...
IPITEx2026     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน ฐิติพรรณ ฉิมสุข  วันที่เขียน 12/1/2569 16:18:24  แก้ไขล่าสุดเมื่อ 25/1/2569 4:19:19   เปิดอ่าน 30  ครั้ง | แสดงความคิดเห็น 0  ครั้ง
การประเมินคาร์บอนฟุตพริ้นท์ขององค์กร (Carbon Footprint for Organization: CFO) » การประเมินคาร์บอนฟุตพริ้นท์ขององค์กร (Carbon Footprint for Organization: CFO)
ในปัจจุบัน ปัญหาการเปลี่ยนแปลงสภาพภูมิอากาศ (Climate Change) ได้กลายเป็นประเด็นสำคัญระดับโลกที่ส่งผลกระทบต่อเศรษฐกิจ สังคม และสิ่งแวดล้อม องค์กรทุกภาคส่วนจึงมีบทบาทสำคัญในการลดการปล่อยก๊าซเรือนกระจ...
  กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน ธวัชชัย เพชรธาราทิพย์  วันที่เขียน 2/1/2569 11:10:25  แก้ไขล่าสุดเมื่อ 25/1/2569 4:14:32   เปิดอ่าน 42  ครั้ง | แสดงความคิดเห็น 0  ครั้ง
ความรู้อาจารย์กับการบริการวิชาการ » ฉลากโภชนาการกับการพัฒนาบรรจุภัณฑ์อาหาร: องค์ความรู้เพื่อยกระดับผลิตภัณฑ์สินค้าเกษตรชุมชน
การอบรมออนไลน์เรื่องฉลากโภชนาการช่วยเสริมสร้างความรู้ที่จำเป็นต่อการพัฒนาผลิตภัณฑ์อาหารและบรรจุภัณฑ์สำหรับชุมชน โดยมุ่งเน้นความเข้าใจบทบาทของฉลากโภชนาการ การแสดงข้อมูลสารอาหารอย่างถูกต้องตามกฎหมาย ...
ฉลากโภชนา  ผลิตภัณฑ์สินค้าเกษตรชุมชน  พัฒนาบรรจุภัณฑ์อาหาร     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน อัณชยารัศมิ์ เนาว์โสภา  วันที่เขียน 29/12/2568 17:09:30  แก้ไขล่าสุดเมื่อ 27/1/2569 3:59:08   เปิดอ่าน 42  ครั้ง | แสดงความคิดเห็น 0  ครั้ง