โครงข่ายประสาทเทียม
วันที่เขียน 2/9/2561 1:36:37     แก้ไขล่าสุดเมื่อ 6/4/2568 2:34:43
เปิดอ่าน: 6866 ครั้ง

โครงข่ายประสาทเทียม (Neural network) เป็นแขนงหนึ่งของปัญญาประดิษฐ์ (Artificial Intelligence, AI) ที่มีโครงสร้างการทำงานคล้ายคลึงกับการทำงานของเซลล์สมอง หรือระบบประสาทของมนุษย์ โดยในทศวรรษที่ผ่านมาโครงข่ายประสาทเทียมมีหลากหลายชนิด เช่น recurrent neural networks, Hopfield neural networks cellular neural networks, Cohen-Grossberg neural networks, bidirectional memory associative (BAM) neural networks ซึ่งพบว่าสามารถแก้ปัญหาที่มีความซับซ้อน หรือใช้ในการทำนายหรือพยากรณ์พฤติกรรมที่มีลักษณะไม่เป็นเชิงเส้น (Nonlinear) ได้ดี และในปัจจุบันนิยมนำโครงข่ายประสาทเทียมมาประยุกต์ใช้แก้ปัญหางานจริงได้อย่างหลากหลายด้าน เช่น การเงินการธนาคาร, อวกาศ, ระบบป้องกันประเทศ, ระบบรักษาความปลอดภัย, การแพทย์, ระบบสื่อสาร, ระบบขนส่ง, การบันเทิง, ทางด้านวิศวกรรม รวมทั้งงานทางด้านการเกษตรซึ่งพบบ่อยมากขึ้น โดยนำโครงข่ายประสาทเทียมมาใช้ด้านเพื่อการจัดหมวดหมู่และแยกแยะวัสดุทางการเกษตร (Classification) การพยากรณ์ผลลัพธ์ของผลผลิต (Forecasting) การประมาณค่าความสัมพันธ์ระหว่างตัวแปรต้นและตัวแปรตาม (Estimating) การควบคุมสภาวะที่มีการเปลี่ยนแปลง (Control) การจดจำรูปแบบ (Recognition) การจัดกลุ่ม (Clustering) เป็นต้น ซึ่งในส่วนของประยุกต์ใช้แก้ปัญหางานดังกล่าวข้างต้นนั้นมักขึ้นกับสมบัติเชิงคุณภาพ (Qualitative property) ของจุดสมดุล (Equilibrium point) ของแต่ละชนิดของโครงข่ายประสาทเทียม คุณสมบัติที่สำคัญโครงข่ายประสาทเทียม คือความสามารถในการเรียนรู้จากตัวอย่าง โดยการพยายามคำนวณหาความสัมพันธ์ระหว่างปัจจัยนำเข้า (input)และ ผลลัพธ์(output) การเรียนรู้จะเร่ิมจากสุ่มค่าน้ำหนัก (Weight) และค่าเบี่ยงเบนเร่ิมต้น (Bias) ค่าผลลัพธ์ที่ได้จากค่าเริ่มต้นจะถูกนำมาเปรียบเทียบกับผลลัพธ์จริง ค่าที่แตกต่างจะถูกนำมาปรับค่านำ้หนักและค่าเบี่ยงเบนโดยวิธีลองผิดลองถูก จนได้ผลลัพธ์ที่ใกล้เคียงหรือตรงกับผลลัพธ์จริง ค่าน้ำหนักและค่าเบี่ยงเบนสุดท้ายจะถูกนำมาใช้ในการพยากรณ์ผลลัพธ์ที่เกิดจากข้อมูล (input) ใหม่

โครงข่ายประสาทเทียม (Neural network) เป็นแขนงหนึ่งของปัญญาประดิษฐ์ (Artificial Intelligence, AI) ที่มีโครงสร้างการทำงานคล้ายคลึงกับการทำงานของเซลล์สมอง หรือระบบประสาทของมนุษย์ โดยในทศวรรษที่ผ่านมาโครงข่ายประสาทเทียมมีหลากหลายชนิด เช่น recurrent neural networks, Hopfield neural networks cellular neural networks, Cohen-Grossberg neural networks, bidirectional memory associative (BAM) neural networks ซึ่งพบว่าสามารถแก้ปัญหาที่มีความซับซ้อน หรือใช้ในการทำนายหรือพยากรณ์พฤติกรรมที่มีลักษณะไม่เป็นเชิงเส้น (Nonlinear) ได้ดี และในปัจจุบันนิยมนำโครงข่ายประสาทเทียมมาประยุกต์ใช้แก้ปัญหางานจริงได้อย่างหลากหลายด้าน เช่น การเงินการธนาคาร, อวกาศ, ระบบป้องกันประเทศ, ระบบรักษาความปลอดภัย, การแพทย์, ระบบสื่อสาร, ระบบขนส่ง, การบันเทิง, ทางด้านวิศวกรรม รวมทั้งงานทางด้านการเกษตรซึ่งพบบ่อยมากขึ้น โดยนำโครงข่ายประสาทเทียมมาใช้ด้านเพื่อการจัดหมวดหมู่และแยกแยะวัสดุทางการเกษตร (Classification) การพยากรณ์ผลลัพธ์ของผลผลิต (Forecasting) การประมาณค่าความสัมพันธ์ระหว่างตัวแปรต้นและตัวแปรตาม (Estimating) การควบคุมสภาวะที่มีการเปลี่ยนแปลง (Control) การจดจำรูปแบบ (Recognition) การจัดกลุ่ม (Clustering) เป็นต้น ซึ่งในส่วนของประยุกต์ใช้แก้ปัญหางานดังกล่าวข้างต้นนั้นมักขึ้นกับสมบัติเชิงคุณภาพ (Qualitative property) ของจุดสมดุล (Equilibrium point) ของแต่ละชนิดของโครงข่ายประสาทเทียม คุณสมบัติที่สำคัญโครงข่ายประสาทเทียม คือความสามารถในการเรียนรู้จากตัวอย่าง โดยการพยายามคำนวณหาความสัมพันธ์ระหว่างปัจจัยนำเข้า (input)และ ผลลัพธ์(output) การเรียนรู้จะเร่ิมจากสุ่มค่าน้ำหนัก (Weight) และค่าเบี่ยงเบนเร่ิมต้น (Bias) ค่าผลลัพธ์ที่ได้จากค่าเริ่มต้นจะถูกนำมาเปรียบเทียบกับผลลัพธ์จริง ค่าที่แตกต่างจะถูกนำมาปรับค่านำ้หนักและค่าเบี่ยงเบนโดยวิธีลองผิดลองถูก จนได้ผลลัพธ์ที่ใกล้เคียงหรือตรงกับผลลัพธ์จริง ค่าน้ำหนักและค่าเบี่ยงเบนสุดท้ายจะถูกนำมาใช้ในการพยากรณ์ผลลัพธ์ที่เกิดจากข้อมูล (input) ใหม่  จากการเข้าร่วมเกิดประโยชน์ต่อตนเองในด้านการพัฒนาทางวิชาการด้านการเรียนการสอนและการวิจัย  โดยการนำความรู้จากการวิจัยและข้อมูลใหม่ๆที่ได้จากการประชุม พบปะผู้เชี่ยวชาญและการแลกเปลี่ยนทางวิชาการและเทคโนโลยีใหม่ในทางคณิตศาสตร์มาใช้ในการทำวิจัยและการถ่ายทอดให้นักศึกษา เพื่อให้มองเห็นการนำคณิตศาสตร์ไปประยุกต์ใช้ในสาขาอื่นๆที่เกี่ยวข้อง

คำสำคัญ :
กลุ่มบทความ :
หมวดหมู่ :
แชร์ :
https://erp.mju.ac.th/acticleDetail.aspx?qid=841
ความคิดเห็นทั้งหมด (0)
ไม่มีข้อมูลตามเงื่อนไขที่ท่านกำหนด
รายการบทความการแลกเปลี่ยนเรียนรู้หมวดหมู่ : กลุ่มงานสายวิชาการ
การจัดการองค์ความรู้ที่ได้จากการเข้าร่วมประชุม อบรม สัมมนา » การประชุมวิชาการระดับชาติ วิทยาศาสตร์ เทคโนโลยี และนวัตกรรม ครั้งที่ ๖ (CSTI-ครั้งที่ 6)
ประชุมวิชาการระดับชาติ วิทยาศาสตร์ เทคโนโลยี และนวัตกรรม ครั้งที่ ๖ โดยในปีนี้ ภายใต้หัวข้อ "วิทยาศาสตร์และนวัตกรรมเพื่อเกษตรสุขภาวะที่ยั่งยืน" ณ คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้ โดยมีบรรยายพิเศษ จ...
Conference  CSTI  Statistics  ประชุมวิชาการ  ระดับชาติ  วิจัย  วิชาการ  วิทยาศาสตร์     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน ศิรศักดิ์ ศศิวรรณพงศ์  วันที่เขียน 4/4/2568 14:31:39  แก้ไขล่าสุดเมื่อ 5/4/2568 22:00:28   เปิดอ่าน 20  ครั้ง | แสดงความคิดเห็น 0  ครั้ง