โครงข่ายประสาทเทียม
วันที่เขียน 2/9/2561 1:36:37     แก้ไขล่าสุดเมื่อ 18/1/2569 16:16:24
เปิดอ่าน: 7254 ครั้ง

โครงข่ายประสาทเทียม (Neural network) เป็นแขนงหนึ่งของปัญญาประดิษฐ์ (Artificial Intelligence, AI) ที่มีโครงสร้างการทำงานคล้ายคลึงกับการทำงานของเซลล์สมอง หรือระบบประสาทของมนุษย์ โดยในทศวรรษที่ผ่านมาโครงข่ายประสาทเทียมมีหลากหลายชนิด เช่น recurrent neural networks, Hopfield neural networks cellular neural networks, Cohen-Grossberg neural networks, bidirectional memory associative (BAM) neural networks ซึ่งพบว่าสามารถแก้ปัญหาที่มีความซับซ้อน หรือใช้ในการทำนายหรือพยากรณ์พฤติกรรมที่มีลักษณะไม่เป็นเชิงเส้น (Nonlinear) ได้ดี และในปัจจุบันนิยมนำโครงข่ายประสาทเทียมมาประยุกต์ใช้แก้ปัญหางานจริงได้อย่างหลากหลายด้าน เช่น การเงินการธนาคาร, อวกาศ, ระบบป้องกันประเทศ, ระบบรักษาความปลอดภัย, การแพทย์, ระบบสื่อสาร, ระบบขนส่ง, การบันเทิง, ทางด้านวิศวกรรม รวมทั้งงานทางด้านการเกษตรซึ่งพบบ่อยมากขึ้น โดยนำโครงข่ายประสาทเทียมมาใช้ด้านเพื่อการจัดหมวดหมู่และแยกแยะวัสดุทางการเกษตร (Classification) การพยากรณ์ผลลัพธ์ของผลผลิต (Forecasting) การประมาณค่าความสัมพันธ์ระหว่างตัวแปรต้นและตัวแปรตาม (Estimating) การควบคุมสภาวะที่มีการเปลี่ยนแปลง (Control) การจดจำรูปแบบ (Recognition) การจัดกลุ่ม (Clustering) เป็นต้น ซึ่งในส่วนของประยุกต์ใช้แก้ปัญหางานดังกล่าวข้างต้นนั้นมักขึ้นกับสมบัติเชิงคุณภาพ (Qualitative property) ของจุดสมดุล (Equilibrium point) ของแต่ละชนิดของโครงข่ายประสาทเทียม คุณสมบัติที่สำคัญโครงข่ายประสาทเทียม คือความสามารถในการเรียนรู้จากตัวอย่าง โดยการพยายามคำนวณหาความสัมพันธ์ระหว่างปัจจัยนำเข้า (input)และ ผลลัพธ์(output) การเรียนรู้จะเร่ิมจากสุ่มค่าน้ำหนัก (Weight) และค่าเบี่ยงเบนเร่ิมต้น (Bias) ค่าผลลัพธ์ที่ได้จากค่าเริ่มต้นจะถูกนำมาเปรียบเทียบกับผลลัพธ์จริง ค่าที่แตกต่างจะถูกนำมาปรับค่านำ้หนักและค่าเบี่ยงเบนโดยวิธีลองผิดลองถูก จนได้ผลลัพธ์ที่ใกล้เคียงหรือตรงกับผลลัพธ์จริง ค่าน้ำหนักและค่าเบี่ยงเบนสุดท้ายจะถูกนำมาใช้ในการพยากรณ์ผลลัพธ์ที่เกิดจากข้อมูล (input) ใหม่

โครงข่ายประสาทเทียม (Neural network) เป็นแขนงหนึ่งของปัญญาประดิษฐ์ (Artificial Intelligence, AI) ที่มีโครงสร้างการทำงานคล้ายคลึงกับการทำงานของเซลล์สมอง หรือระบบประสาทของมนุษย์ โดยในทศวรรษที่ผ่านมาโครงข่ายประสาทเทียมมีหลากหลายชนิด เช่น recurrent neural networks, Hopfield neural networks cellular neural networks, Cohen-Grossberg neural networks, bidirectional memory associative (BAM) neural networks ซึ่งพบว่าสามารถแก้ปัญหาที่มีความซับซ้อน หรือใช้ในการทำนายหรือพยากรณ์พฤติกรรมที่มีลักษณะไม่เป็นเชิงเส้น (Nonlinear) ได้ดี และในปัจจุบันนิยมนำโครงข่ายประสาทเทียมมาประยุกต์ใช้แก้ปัญหางานจริงได้อย่างหลากหลายด้าน เช่น การเงินการธนาคาร, อวกาศ, ระบบป้องกันประเทศ, ระบบรักษาความปลอดภัย, การแพทย์, ระบบสื่อสาร, ระบบขนส่ง, การบันเทิง, ทางด้านวิศวกรรม รวมทั้งงานทางด้านการเกษตรซึ่งพบบ่อยมากขึ้น โดยนำโครงข่ายประสาทเทียมมาใช้ด้านเพื่อการจัดหมวดหมู่และแยกแยะวัสดุทางการเกษตร (Classification) การพยากรณ์ผลลัพธ์ของผลผลิต (Forecasting) การประมาณค่าความสัมพันธ์ระหว่างตัวแปรต้นและตัวแปรตาม (Estimating) การควบคุมสภาวะที่มีการเปลี่ยนแปลง (Control) การจดจำรูปแบบ (Recognition) การจัดกลุ่ม (Clustering) เป็นต้น ซึ่งในส่วนของประยุกต์ใช้แก้ปัญหางานดังกล่าวข้างต้นนั้นมักขึ้นกับสมบัติเชิงคุณภาพ (Qualitative property) ของจุดสมดุล (Equilibrium point) ของแต่ละชนิดของโครงข่ายประสาทเทียม คุณสมบัติที่สำคัญโครงข่ายประสาทเทียม คือความสามารถในการเรียนรู้จากตัวอย่าง โดยการพยายามคำนวณหาความสัมพันธ์ระหว่างปัจจัยนำเข้า (input)และ ผลลัพธ์(output) การเรียนรู้จะเร่ิมจากสุ่มค่าน้ำหนัก (Weight) และค่าเบี่ยงเบนเร่ิมต้น (Bias) ค่าผลลัพธ์ที่ได้จากค่าเริ่มต้นจะถูกนำมาเปรียบเทียบกับผลลัพธ์จริง ค่าที่แตกต่างจะถูกนำมาปรับค่านำ้หนักและค่าเบี่ยงเบนโดยวิธีลองผิดลองถูก จนได้ผลลัพธ์ที่ใกล้เคียงหรือตรงกับผลลัพธ์จริง ค่าน้ำหนักและค่าเบี่ยงเบนสุดท้ายจะถูกนำมาใช้ในการพยากรณ์ผลลัพธ์ที่เกิดจากข้อมูล (input) ใหม่  จากการเข้าร่วมเกิดประโยชน์ต่อตนเองในด้านการพัฒนาทางวิชาการด้านการเรียนการสอนและการวิจัย  โดยการนำความรู้จากการวิจัยและข้อมูลใหม่ๆที่ได้จากการประชุม พบปะผู้เชี่ยวชาญและการแลกเปลี่ยนทางวิชาการและเทคโนโลยีใหม่ในทางคณิตศาสตร์มาใช้ในการทำวิจัยและการถ่ายทอดให้นักศึกษา เพื่อให้มองเห็นการนำคณิตศาสตร์ไปประยุกต์ใช้ในสาขาอื่นๆที่เกี่ยวข้อง

คำสำคัญ :
กลุ่มบทความ :
หมวดหมู่ :
แชร์ :
https://erp.mju.ac.th/acticleDetail.aspx?qid=841
ความคิดเห็นทั้งหมด (0)
ไม่มีข้อมูลตามเงื่อนไขที่ท่านกำหนด
รายการบทความการแลกเปลี่ยนเรียนรู้หมวดหมู่ : กลุ่มงานสายวิชาการ
การเผยแพร่ความรู้ที่ได้จากการเข้าร่วมอบรม/สัมมนา/งานประชุมวิชาการ » ความรู้ที่ได้จากการเข้าร่วมสัมมนาวิชาการ เรื่อง การใช้งานเครื่อง FTIR, TGA, DSC
สถาบันบริการตรวจสอบคุณภาพและมาตรฐานผลิตภัณฑ์ร่วมกับบริษัทเพอร์กินเอลเมอร์ (ประเทศไทย) ได้จัดสัมมนาวิชาการ เรื่อง การใช้งานเครื่อง FTIR, TGA, DSC เพื่อการตรวจสอบคุณภาพวัสดุและพัฒนาผลิตภัณฑ์ ในวันที่...
DSC  FTIR  TGA     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน วีรินท์รดา ทะปะละ  วันที่เขียน 14/1/2569 14:59:45  แก้ไขล่าสุดเมื่อ 18/1/2569 13:53:45   เปิดอ่าน 19  ครั้ง | แสดงความคิดเห็น 0  ครั้ง
งานนวัตกรรม IPITEx2026 » งานนวัตกรรม IPITEx2026
ความรู้และประโยชน์ที่เข้าร่วมงาน IPITEx2026 วันที่ 9 มกราคม 2569 สำนักงานการวิจัยแห่งชาติ (วช.) กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม ได้จัดงาน Bangkok International Intellectual Proper...
IPITEx2026     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน ฐิติพรรณ ฉิมสุข  วันที่เขียน 12/1/2569 16:18:24  แก้ไขล่าสุดเมื่อ 18/1/2569 13:53:43   เปิดอ่าน 25  ครั้ง | แสดงความคิดเห็น 0  ครั้ง
การประเมินคาร์บอนฟุตพริ้นท์ขององค์กร (Carbon Footprint for Organization: CFO) » การประเมินคาร์บอนฟุตพริ้นท์ขององค์กร (Carbon Footprint for Organization: CFO)
ในปัจจุบัน ปัญหาการเปลี่ยนแปลงสภาพภูมิอากาศ (Climate Change) ได้กลายเป็นประเด็นสำคัญระดับโลกที่ส่งผลกระทบต่อเศรษฐกิจ สังคม และสิ่งแวดล้อม องค์กรทุกภาคส่วนจึงมีบทบาทสำคัญในการลดการปล่อยก๊าซเรือนกระจ...
  กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน ธวัชชัย เพชรธาราทิพย์  วันที่เขียน 2/1/2569 11:10:25  แก้ไขล่าสุดเมื่อ 18/1/2569 13:53:41   เปิดอ่าน 31  ครั้ง | แสดงความคิดเห็น 0  ครั้ง
ความรู้อาจารย์กับการบริการวิชาการ » ฉลากโภชนาการกับการพัฒนาบรรจุภัณฑ์อาหาร: องค์ความรู้เพื่อยกระดับผลิตภัณฑ์สินค้าเกษตรชุมชน
การอบรมออนไลน์เรื่องฉลากโภชนาการช่วยเสริมสร้างความรู้ที่จำเป็นต่อการพัฒนาผลิตภัณฑ์อาหารและบรรจุภัณฑ์สำหรับชุมชน โดยมุ่งเน้นความเข้าใจบทบาทของฉลากโภชนาการ การแสดงข้อมูลสารอาหารอย่างถูกต้องตามกฎหมาย ...
ฉลากโภชนา  ผลิตภัณฑ์สินค้าเกษตรชุมชน  พัฒนาบรรจุภัณฑ์อาหาร     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน อัณชยารัศมิ์ เนาว์โสภา  วันที่เขียน 29/12/2568 17:09:30  แก้ไขล่าสุดเมื่อ 17/1/2569 15:30:43   เปิดอ่าน 34  ครั้ง | แสดงความคิดเห็น 0  ครั้ง