การทำเหมืองข้อมูลด้วย Rapidminer Studio 6
วันที่เขียน 9/9/2558 15:31:49     แก้ไขล่าสุดเมื่อ 19/5/2568 12:38:07
เปิดอ่าน: 8607 ครั้ง

โปรแกรม Rapidminer Studio ๖ เป็นเครื่องที่ใช้ในการวิเคราะห์ข้อมูลที่มีขนาดใหญ่หรือเหมืองข้อมูล และสามารถทำการวิเคราะห์ข้อมูลแบบต่างๆ ได้ เช่น - การจำแนกชนิดข้อมูล - การจัดกลุ่มข้อมูล เป็นต้น

เหมืองข้อมูล (Data mining)

เป็นกระบวนการ (Process) ที่กระทำกับข้อมูลขนาดใหญ่เพื่อค้นหารูปแบบ แนวทาง และความสัมพันธ์ที่ซ่อนอยู่ในชุดข้อมูลนั้นโดยอาศัยหลักสถิติ การรู้จำ การเรียนรู้ของเครื่อง และหลักคณิตศาสตร์เพื่อให้ได้สารสนเทศที่เราไม่รู้ออกมา โดยสารสนเทศที่ได้จะมีเหตุผลและสามารถนำไปใช้ประโยชน์ได้

เทคนิคต่าง ๆ ของ Data Mining
 

 1. Association rule Discovery

หลักการทำงาน คือ การค้นหาความสัมพันธ์ของข้อมูลจากข้อมูลขนาดใหญ่ที่มีอยู่ เพื่อนำไปวิเคราะห์ หรือทำนายปรากฏการณ์ต่าง ๆ เช่น การวิเคราะห์การซื้อสินค้าของลูกค้าเรียกว่า “Market Basket Analysis”
 2. Classification & Prediction

เป็นการแบ่งประเภทของข้อมูล โดยจะหากฎเพื่อระบุประเภทวัตถุจากคุณสมบัติของวัตถุ

 3. Database Clustering Or Segmentation

เป็นเทคนิคการลดขนาดของข้อมูล ด้วยการรวมกลุ่มตัวแปรที่มีลักษณะเดียวกันไว้ด้วยกัน เพื่อนำข้อมูลที่ได้ไปวิเคราะห์

ส่วนประกอบที่สำคัญของระบบการทำเหมืองข้อมูล 

  • Database & Data Warehouse เป็นแหล่งที่เก็บข้อมูลอื่นๆ เช่น แฟ้มข้อมูล สเปรดชีท ซึ่งเป็นแหล่งที่เก็บข้อมูลดิบสำหรับการทำเหมืองข้อมูล
  • Database/Data Warehouse server ทำหน้าที่นำเข้าข้อมูลตามคำขอของผู้ใช้
  • Knowledge base ได้แก่

–                  ความรู้ในงานที่ทำจะเป็นประโยชน์ต่อการชี้นำทางการสืบค้น หรือการประเมินความน่าสนใจของรูปแบบผลลัพธ์ที่ได้ โดยเป็นความรู้เฉพาะด้านในงานที่ทำ เช่น ความรู้เฉพาะทางการแพทย์ หรือดาราศาสตร์ เป็นต้น

  • Data Mining Engine เป็นส่วนประกอบหลัก ประกอบด้วยโมดูล (Modules) ซึ่งรับผิดชอบงานทำเหมืองประเภทต่างๆ ได้แก่ การหากฎความสัมพันธ์ การจำแนกประเภท การจัดกลุ่ม เป็นต้น
  • Pattern Evaluation Module ทำงานร่วมกับ Data Mining Engine โดยใช้ค่าขีดแบ่งมาตรวัดความน่าสนใจในการกลั่นกรองรูปแบบผลลัพธ์ที่ได้ ซึ่งใช้ประเมินความน่าสนใจของรูปแบบการทำเหมืองที่ได้
  • Graphical User Interface ส่วนติดต่อประสานระหว่างผู้ใช้กับระบบทำเหมือง ซึ่งช่วยให้ผู้ใช้สามารถระบุงานทำเหมืองที่ต้องการ

กลยุทธ์ในการทำเหมืองข้อมูล

  1. แบบจำลองในการทำนาย (Predictive/ Supervised Modeling) เป็นผลลัพธ์ที่สร้างจากการอนุมาน (Inference) ชุดข้อมูลปัจจุบัน เพื่อใช้ในการทำนายประเภทตัวอย่างในอนาคต

    2. แบบจำลองในการบรรยาย (Descriptive/ Unsupervised Modeling) ในที่นี้ อาจเป็นการหาความสัมพันธ์ต่างๆ (Association) หรือหาการจัดกลุ่มข้อมูล (Clustering) ซึ่งไม่ได้มีจุดมุ่งหมายเพื่อการทำนาย

 

 

คำสำคัญ :
กลุ่มบทความ :
หมวดหมู่ :
แชร์ :
https://erp.mju.ac.th/acticleDetail.aspx?qid=424
ความคิดเห็นทั้งหมด (0)
ไม่มีข้อมูลตามเงื่อนไขที่ท่านกำหนด
รายการบทความการแลกเปลี่ยนเรียนรู้หมวดหมู่ : กลุ่มงานสายวิชาการ
งานวิจัย » การประชุมวิชาการระดับชาติ วิทยาศาสตร์ เทคโนโลยี และนวัตกรรมครั้งที่ 6 ประจำปี 2568 คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้
การประชุมวิชาการระดับชาติ วิทยาศาสตร์ เทคโนโลยี และนวัตกรรมครั้งที่ 6 ประจำปี 2568ครั้งนี้ เปิดมุมมองใหม่ด้านอาชีพ เทคโนโลยีเกษตร เกมที่ช่วยในการการเรียนรู้ และนาโนเซ็นเซอร์ เสริมทักษะนักศึกษาและอา...
การประชุมวิชาการระดับชาติ วิทยาศาสตร์ เทคโนโลยี และนวัตกรรม     กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน นลิน วงศ์ขัตติยะ  วันที่เขียน 13/5/2568 20:04:00  แก้ไขล่าสุดเมื่อ 17/5/2568 22:13:30   เปิดอ่าน 29  ครั้ง | แสดงความคิดเห็น 0  ครั้ง
งานวิจัย » การวิเคราะห์สารสกัดจากธรรมชาติ
จากการเข้าร่วมการประชุมเชิงปฏิบัติการ เรื่อง การแลกเปลี่ยนเรียนรู้: การใช้ประโยชน์จากสมุนไพรและเห็ดในประเทศไทยเชิงสุขภาพเพื่อพัฒนาคุณภาพและความปลอดภัยของผลิตภัณฑ์ โดยการประชุมเชิงปฏิบัติการแลกเปลี่...
  กลุ่มงานตามสมรรถนะบุคลากร   กลุ่มงานสายวิชาการ
ผู้เขียน นลิน วงศ์ขัตติยะ  วันที่เขียน 7/5/2568 12:07:25  แก้ไขล่าสุดเมื่อ 18/5/2568 22:38:31   เปิดอ่าน 39  ครั้ง | แสดงความคิดเห็น 0  ครั้ง