เมนู
มหาวิทยาลัยแม่โจ้
มหาวิทยาลัยแม่โจ้
Maejo University
ติดต่อ
บุคลากร (เข้าสู่ระบบ)
หน้าหลัก
บทความการแลกเปลี่ยนเรียนรู้
ตามคำสำคัญ
ระบบขนส่งอัจฉริยะ
รายการบทความการแลกเปลี่ยนเรียนรู้ตามคำสำคัญ
:
ระบบขนส่งอัจฉริยะ
1
ความรู้จากการเข้าอบรม ประชุมวิชาการ
»
รายงานสรุปเนื้อหาและการนำไปใช้ประโยชน์ จากการเข้าร่วมประชุมวิชาการในการประชุมวิชาการ International Conference on Recent Trends in Pure and Applied Mathematics – 2021 (ICRTPAM-21) เมื่อวันที่ 2–3 กันยายน 2564 ณ มหาวิทยาลัยราชภัฎภูเก็ต ตามหนังสือที่ อว 69.5.5 / 186 ลงวันที่ 30 มิถุนายน 2564
ความแออัดของการจราจรเป็นปัญหาที่หนักหนาสำหรับเมืองขนาดใหญ่และขนาดกลางจำนวนมาก ซึ่งเป็นภัยคุกคามร้ายแรงต่อการพัฒนาเมืองอย่างยั่งยืน เมื่อเร็วๆ นี้ ระบบจราจรอัจฉริยะ (ITS) ได้กลายเป็นเครื่องมือที่มีประสิทธิภาพในการบรรเทาความแออัดของเมือง กุญแจสำคัญของ ITS อยู่ที่การคาดการณ์การไหลของการจราจรที่แม่นยำ อย่างไรก็ตาม วิธีการพยากรณ์ที่มีอยู่ของการไหลของการจราจรไม่สามารถปรับให้เข้ากับความสุ่มและความยาวที่แท้จริงของอนุกรมเวลาการไหลของการจราจรได้ ในการแก้ปัญหา บทความนี้ใช้การเรียนรู้เชิงลึก (DL) เพื่อคาดการณ์การไหลของการจราจรผ่านการวิเคราะห์อนุกรมเวลา ผู้เขียนได้พัฒนาแบบจำลองการคาดการณ์การไหลของการจราจรโดยอิงจากเครือข่ายหน่วยความจำระยะสั้น (LSTM) แบบจำลองที่เสนอถูกนำมาเปรียบเทียบกับแบบจำลองการคาดการณ์แบบคลาสสิกสองแบบ ได้แก่ โมเดลค่าเฉลี่ยเคลื่อนที่แบบบูรณาการอัตโนมัติ (ARIMA) และแบบจำลองโครงข่ายประสาทเทียมแบบย้อนกลับ (backpropagation neural Network) ผ่านการทดลองคาดการณ์ปริมาณการใช้ข้อมูลระยะยาว โดยใช้อนุกรมเวลาการไหลของการรับส่งข้อมูลจริง ผลการทดลองแสดงให้เห็นว่าเครือข่าย LSTM ที่เสนอนั้นมีประสิทธิภาพเหนือกว่าโมเดลคลาสสิกในด้านความแม่นยำในการทำนาย การวิจัยของเราเปิดเผยกฎหมายวิวัฒนาการแบบไดนามิกของกระแสการจราจรและอำนวยความสะดวกในการตัดสินใจของการจัดการจราจร
คำสำคัญ :
ระบบขนส่งอัจฉริยะ
กลุ่มบทความ :
กลุ่มงานตามสมรรถนะบุคลากร
หมวดหมู่ :
กลุ่มงานสายวิชาการ
สถิติการเข้าถึง :
เปิดอ่าน
1175
ครั้ง | แสดงความคิดเห็น
0
ครั้ง
ผู้เขียน
เกรียงไกร ราชกิจ
วันที่เขียน
16/9/2564 19:14:05
แก้ไขล่าสุดเมื่อ
22/11/2567 2:52:07