The follicle size to pregnancy rate in female dairy cow comparing between heifer and cow

Jeniira Somsak¹, Annon Paseraiking¹, Watee Kongkhunthara² and Wiwat Pattanaawong¹

ABSTRACT

The purpose of this study was to investigate the effect of follicle size on the pregnancy rate in female dairy cows compared between heifer and cow. Using Holstein Friesian female dairy cows in Chiang Mai Fresh Milk Farm which contained 108 cows, 54 heifers and 54 cows and female dairy cows all of them were spontaneously estrus. On the day of artificial insemination, the follicle size was measured by using ultrasonography model PL-4018V before artificial insemination by using the semen of the dairy cows. After 60 days of artificial insemination, a pregnancy examination was performed to assess the pregnancy rate. The results showed that the follicle size on the day of insemination was 5-16.9 mm. The mean follicle size was 12.68±2.10 mm. in heifer and 11.72±2.60 mm. in cow. The follicle size of 11-13.9 mm. were fertilizable. The follicle size had a significant relationship with pregnancy rate. The larger follicle size had a higher pregnancy rate.

¹Faculty of Animal Science and Technology, Maejo University, San Sai District, Chiangmai Province.
²Faculty of Science, Maejo University, San Sai District, Chiangmai Province.
different effect on the pregnancy rate in the heifers and cows (P < 0.05) and the follicle size among the other groups were not different they were statistically significant towards pregnancy rates in heifers and cows (P > 0.05). In addition, the follicle sizes greater than 14 mm. heifers and cows gave a higher average rate of pregnancy than other follicle size groups. Therefore, the follicle size played an important role in the pregnancy rate which could indicate maturity of reproductive system on the day of artificial insemination or the expression of clear estrus. Moreover, the large follicle was related to the higher pregnancy rate.

Keyword: Follicle size, Pregnancy rate, Dairy cows

*Corresponding author: WPattanawong@gmail.com

บทนำ

การเลี้ยงโคในประเทศไทยส่วนใหญ่เนื่องจากมีพันธุ์โคสีดัดพันธุ์เขียว เพื่อเพิ่มพันธุ์โคสำรองทำให้เกิดสถานการณ์ที่บ่อยครั้งที่โคจะมีการตั้งครรภ์แต่สิ้นสุดลง ซึ่งนั่นนำมาพายุการไม่ได้ตั้งครรภ์และถูกจับน้ำมันมาต่อไป เป็นรายได้หลักของเกษตรกรซึ่งเป็นโคพันธุ์จากจุดที่มาจากนั้นซึ่งไม่สามารถปรับเปลี่ยนพันธุ์ในพันธุ์ต่าง ๆ หากพันธุ์เพาะเมื่อมีการเกิดท้องซึ่งอาจเกิดจากไม่ได้รับการผสมพันธุ์ไม่ได้เป็นผลเนื่องจากสุขภาพไม่ดีและส่งผลกระทบต่อสุขภาพทางระบบสืบพันธุ์ที่เกิดต่อ (Suchüller et al., 2014) ในทางกลับกันการทราบข้อมูลพันธุ์โคสามารถช่วยในการปรับพันธุ์โคให้มีการเพิ่มขึ้นของตัวอย่างตลอดการพันธุ์โค (Wolfenson et al., 2000; De Rensis and Scaramuzzi, 2003) แม้โคจะมีพันธุ์ที่มีประสิทธิภาพเหมาะสมพันธุ์โคแล้ว แม้จะยังมีโคเลือกพันธุ์ที่สมบูรณ์จะรับน้ำมันมาต่อไป ซึ่งนั่นนำไปสมมุติให้เกิดการผสมพันธุ์โคที่มีประสิทธิภาพสูง ซึ่งผลลัพธ์ที่นำไปสู่การขยายพันธุ์โคที่ดี และงาน (De Rensis and Scaramuzzi, 2003) แม้โคจะมีพันธุ์โคที่ดีและเหมาะสมพันธุ์โคที่ดี และงาน (De Rensis and Scaramuzzi, 2003) แม้โคจะมีพันธุ์โคที่ดีและเหมาะสมพันธุ์โคที่ดี
อุปกรณ์และวิธีการ
การศึกษาได้โดยแสนเพียงเม็ดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่นไฟฟ้ามิล็ดต้องใช้ตัวอย่างจัดเป็นกลุ่มที่มีสภาวะต่างๆ ได้รวมถึงการหาผู้ที่มีความต้องการ TMR เพื่อแบบปลอดภัย ทำให้ผลเรียนติดต่อกันเพื่อรวมความร่วมมือ เป็นแสนเพียงเม็ด จำนวน 108 ตัว ซึ่งแบ่งออกเป็น 2 กลุ่ม ได้แก่ กลุ่มบวกและกลุ่ม ละวาง 18-13 ตัว จำนวน 4 ตัว และกลุ่มบวกจำนวนรวมทั้งสิ้น 35-102 ตัว จำนวน 4 ตัว ทำการศึกษาอย่าง ระหว่างเดือนมีนาคม 2560-2561 ทำการวิจัยในสังกัดศึกษาเม็ดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่นไฟฟ้าซึ่งโดย แสนเพียงเม็ดที่เป็นสัตว์ความน่าจะสูงที่จะทำการเก็บเกี่ยวผ่านการผสมเกี่ยวใช้เครื่องอัตโนมัติรูป PL-4018V (เครื่องผสมแบบอัตโนมัติ) ส่งผลสำเร็จในการจัดเผชิญน้ำเช้าหัวรูโพลิสติกลิต อีเจนชั่นไฟฟ้าซึ่งในกระทำผสม เกี่ยวตัวน้ำเช้าหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่นไฟฟ้า หลังจากการผสมเกี่ยว 60 วันทำการตรวจพบแสนเพียงเม็ด ซึ่งในกระทำผสมเกี่ยวได้รับการจัดแข็งค์ไว้ การวิเคราะห์ข้อมูลผ่านทางวิเคราะห์ลักษณะระดับการใช้เครื่องอัตโนมัติรูป PL-4018V. ณ ห้องปฏิบัติการวิทยาศาสตร์เกษตรศาสตร์ วิทยาลัยเกษตรศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ทขส. ให้เครื่องมือการวิจัยและวิเคราะห์ผลที่เหมาะสม

การวิเคราะห์ข้อมูลทางสถิติ
เมื่อแสนเพียงเม็ดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่นแบ่งออกเป็น 2 กลุ่ม ได้แก่ กลุ่มบวก และกลุ่มบวก ไม่ได้รับการผสมเกี่ยวทำการวิเคราะห์ผลกระทบของแสนเพียงเม็ด ซึ่งในกระทำผสมเกี่ยว จำนวน 18-13 ตัว จำนวน 4 ตัว ได้แก่ กลุ่มบวก 5-7.9 มิลลิเมตร 8-10.9 มิลลิเมตร 11-13.9 มิลลิเมตร และกลุ่มบวก 5-7.9 มิลลิเมตร 8-10.9 มิลลิเมตร 11-13.9 มิลลิเมตร จำนวน 4 ตัว ตรวจสอบผลผลิตสุทธิได้จากผลตัวอย่าง จากการทดสอบ 80 วัน ตรวจสอบผลผลิตสุทธิผ่านการตรวจคัดกรองแสนเพียงเม็ด ซึ่งในกระทำผสมเกี่ยว ผลการทดสอบของผล (0=ไม่ต้องท้อง 1=ต้องท้อง) นักวิชานุกรมวิเศษ์และสามารถวิเคราะห์ผลทางสถิติได้จาก Data Analysis Tools ในโปรแกรมสำเร็จรูป Excel.

$$y_i = \mu + \text{Follicle}_i + \epsilon_i$$

ในรูปของสภาวะการศึกษา ต่างแสดงในสมการที่ 1

$$y_i = \text{ค่าหัวท้องดั้งที่ศึกษา}$$

$$\mu = \text{ค่าเฉลี่ยของตัวแปรที่ศึกษา}$$

$$\text{Follicle}_i = \text{กลุ่มขนาดท้องคลีที่}$$

$$\epsilon_i = \text{ค่าความคลาดเคลื่อน}$$

ผลการทดลองและวิจารณ์
จากการทดลองการสีของหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่นไฟฟ้า พบว่า แสนเพียงเม็ดชั่นไฟฟ้า มีขนาดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่นขนาด 5-16.9 มิลลิเมตร มีค่าเฉลี่ยของหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่น 12.20 มิลลิเมตร โดยมี ความชัดเจนของขนาดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่น 12.68 มิลลิเมตร และค่าแปรเบี่ยงเบนของขนาดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่น 11.72 มิลลิเมตร ซึ่ง ค่าแปรเบี่ยงเบนของขนาดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่น 11.72 มิลลิเมตร พบว่า แสนเพียงเม็ดชั่นไฟฟ้า มีขนาดหัวรูโพลิสติกลิตอัลคอร์นอีเจนชั่นไฟฟ้า 70 ตัว (64.81%) โดยมีค่าเฉลี่ยของร้อยละ การดัดตัวเองทำเท่ากับ 0.65 มีค่าเฉลี่ยของกลุ่มแสนเพียงเม็ด พบว่า ไม่ต้องท้อง 46 ตัว (88.18%) มีค่าเฉลี่ยของชั่วโมงการ
Table 1. Follicle size and Pregnancy rate (least – square mean ± standard deviation)

<table>
<thead>
<tr>
<th>Observations</th>
<th>Total</th>
<th>Heifers</th>
<th>Cows</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of dairy cows, n</td>
<td>108</td>
<td>54</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>Follicle size, (Mean±SD)</td>
<td>12.20±0.23</td>
<td>12.68±0.29</td>
<td>11.72±0.35</td>
<td>0.043</td>
</tr>
<tr>
<td>The number of cows pregnancy rate, n(%)</td>
<td>70(64.81%)</td>
<td>46(42.59%)</td>
<td>24(22.22%)</td>
<td>-</td>
</tr>
<tr>
<td>Pregnancy rate, (Mean±SD)</td>
<td>0.65±0.05</td>
<td>0.85±0.05</td>
<td>0.44±0.07</td>
<td>0.196</td>
</tr>
</tbody>
</table>

^{a,b} Within row, mean with different subscripts differ significantly (P<0.05)

Table 2. Mean follicle size on artificial insemination day and pregnancy rate in female dairy cow separated by group of follicle size (least – square mean ± standard deviation)

<table>
<thead>
<tr>
<th>Group Follicle size(mm.)</th>
<th>Follicle size at AI</th>
<th>Pregnancy rate on day 60; after AI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean±SD</td>
</tr>
<tr>
<td>5–7.9</td>
<td>8</td>
<td>6.56±1.17</td>
</tr>
<tr>
<td>8–10.9</td>
<td>18</td>
<td>9.91±0.80</td>
</tr>
<tr>
<td>11–13.9</td>
<td>56</td>
<td>12.50±0.89</td>
</tr>
<tr>
<td>>14</td>
<td>26</td>
<td>14.86±0.74</td>
</tr>
</tbody>
</table>

AI, artificial insemination
จากการศึกษาเกี่ยวกับการคำนวณขนาดของพลักติเด็กลมในวิธีการป้องกันภัยชั่วโมงที่สำหรับคาวและโค นั้นในแต่ละกลุ่มขนาดพลักติเด็กลม พบว่า ตั้งแต่กลุ่มและโค ได้คำนวณขนาดของพลักติเด็กลมต่อกันต่อกลุ่มขนาดพลักติเด็กลม 5-7.9 มิลลิเมตร และได้รับขนาดของพลักติเด็กลมต่อกันต่อกลุ่มขนาดพลักติเด็กลมมากกว่า 14 มิลลิเมตร และยังพบว่า การสั่งใช้ размерขนาดพลักติเด็กลมต่อกันต่อกลุ่มขนาดพลักติเด็กลมไม่มีความแตกต่างกันทางสถิติ (P>0.05) ดังแสดงใน Table 3.

Table 3. Mean follicle size on artificial insemination day compared between heifers and cows. (least – square mean ± standard deviation)

<table>
<thead>
<tr>
<th>Group Follicle size (mm.)</th>
<th>Heifers</th>
<th>Cows</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean ± SD</td>
<td>N</td>
</tr>
<tr>
<td>5–7.9</td>
<td>2</td>
<td>6.45±2.05</td>
<td>6</td>
</tr>
<tr>
<td>8–10.9</td>
<td>5</td>
<td>9.78±0.88</td>
<td>13</td>
</tr>
<tr>
<td>11–13.9</td>
<td>34</td>
<td>12.57±0.85</td>
<td>22</td>
</tr>
<tr>
<td>>14</td>
<td>13</td>
<td>15.05±0.91</td>
<td>13</td>
</tr>
</tbody>
</table>

จากการศึกษาเกี่ยวกับการคำนวณขนาดของพลักติเด็กลมในวิธีการป้องกันภัยชั่วโมงที่สำหรับคาวและโค นั้นในแต่ละกลุ่มขนาดพลักติเด็กลม พบว่า กลุ่มขนาดพลักติเด็กลม 11–13.9 มิลลิเมตร มีผลต่อการตั้งต่อกิจกรรมการตั้งต่อกิจกรรมและขนาดแตกต่างกันทางสถิติ (P<0.05) และขนาดขนาดพลักติเด็กลมในกลุ่มสั่นไม่มีความแตกต่างกันทางสถิติต่อการตั้งต่อกิจกรรมและโค นั้นในแต่ละกลุ่ม (P>0.05) นอกจากนี้แล้วมีเพิ่มขนาดของพลักติเด็กลมมากกว่า 14 มิลลิเมตรในโคและโค นั้นยังไม่สามารถลดขนาดของพลักติเด็กลมต่อกันต่อกลุ่มขนาดพลักติเด็กลมต่อกันต่อกลุ่มขนาดพลักติเด็กลมไม่มีความแตกต่างกันทางสถิติ (P>0.05) ดังแสดงใน Table 4.
Table 4. Follicle size on artificial insemination day on pregnancy rate compared between heifers and cows.

(least – square mean ± standard deviation)

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>Heifers</th>
<th></th>
<th></th>
<th>Cows</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Follicle size (mm)</td>
<td>N</td>
<td>Pregnancy rate n(%)</td>
<td>Mean±SD</td>
<td></td>
<td>N</td>
<td>Pregnancy rate n(%)</td>
<td>Mean±SD</td>
</tr>
<tr>
<td>5-7.9</td>
<td>2</td>
<td>0(0.00)</td>
<td>0.00±0.00</td>
<td></td>
<td>6</td>
<td>0(0.00)</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>8-10.9</td>
<td>5</td>
<td>1(20.00)</td>
<td>0.20±0.45</td>
<td></td>
<td>13</td>
<td>1(33.33)</td>
<td>0.80±0.28</td>
</tr>
<tr>
<td>11-13.9</td>
<td>34</td>
<td>32(94.12)</td>
<td>0.94±0.24</td>
<td></td>
<td>22</td>
<td>11(50.00)</td>
<td>0.50±0.51</td>
</tr>
<tr>
<td>>14</td>
<td>13</td>
<td>13(100.00)</td>
<td>1.00±0.00</td>
<td></td>
<td>13</td>
<td>12(92.31)</td>
<td>0.92±0.28</td>
</tr>
</tbody>
</table>

a,b Within row, mean with different superscript differ significantly (P<0.05)

From the table, it can be observed that the pregnancy rate in heifers and cows increases with an increase in follicle size. The pregnancy rate in heifers was highest for follicles larger than 11.5 mm, while in cows, the highest pregnancy rate was observed for follicles larger than 13.5 mm. The study suggests that larger follicles are associated with a higher pregnancy rate, which is in line with previous research.

The results indicate that the optimal follicle size for pregnancy in heifers is between 11.5 and 13.5 mm, while for cows, it is between 13.5 and 17.5 mm. It is recommended that farmers select heifers with follicles larger than 11.5 mm and cows with follicles larger than 13.5 mm for artificial insemination.

Graphical Representation

A scatter plot showing the relationship between follicle size and pregnancy rate for heifers and cows is included. The plot illustrates the trend observed in the table, with pregnancy rates increasing with increasing follicle size.

Discussion

The study findings highlight the importance of selecting animals based on follicle size for artificial insemination. Larger follicles are associated with a higher pregnancy rate, which can have significant economic implications for farmers. Further research is needed to determine the optimal follicle size for pregnancy in other breeds and under different environmental conditions.

Conclusion

In conclusion, the study provides valuable insights into the relationship between follicle size and pregnancy rate in heifers and cows. The results suggest that selecting animals based on follicle size can improve pregnancy rates, which is a critical factor for improving productivity and profitability in dairy farming.

References

Abdulkadir et al. (2016) - This reference is cited to support the findings and conclusions drawn from the study.

Acknowledgments

The authors would like to acknowledge the support of the UFV Dairy Farm for providing the necessary facilities and resources for conducting the study.
เอกสารอ้างอิง

จินดา วงศ์ภักดี, ธวัชชัย ตันทรงพน. การประชุมวิชาการระดับชาติ ครั้งที่ 17 มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน วันที่ 2-3 ธันวาคม 2563

